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Symplectic invariants

Group invariants

Group invariants
I define quantum field theory interaction

To quantize gravity
I tensor models
I address classical Lie group (unitary and

orthogonal) invariants in their
construction.

Classical Lie groups :
I orthogonal
I unitary
I real symplectic group Sp(2N)

Matrix :

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

a41

a42

a43

a44

Tensor :

a000

a010

a020

a030

a100

a110

a120

a130

a200

a210

a220

a230

a300

a310

a320

a330

a001

a002

a003

a101

a102

a103

a201

a202

a203

a301

a302

a303

a311

a312

a313

a321

a322

a323

a331

a332

a333

Goal : enumerate symplectic invariants
I Applications : e.g., problems in condensed matter, black hole physics
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Symplectic invariants

Calculation of symplectic invariants

Relies on tensor contraction
I the tensor contains formal, real variables
I result : a polynomial made of these variables
I is the invariant equal to 0 ?

Example : rank d = 3

I contraction of 4 tensors
I called complete graph contraction

Goal : show that for N > 3, the invariant is not identically null
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Symplectic invariants

Calculation of symplectic invariants (1/2)

Symplectic matrix J
I size 2N × 2N

J =

(
0 IN
−IN 0

)
, J2 = −I2N , (1)

with :
I IN , for all N the identity matrix of MN (R)

I A matrix K ∈ Sp(2N) obeys KJKT = J, and KTJK = J

Interactions of Sp(2N) tensor models :
I contractions of an even number of tensors T
I contraction metric : the matrix J
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Symplectic invariants

Calculation of symplectic invariants (2/2)

Physical applications :
I in particular, contraction of 4 tensors as follows :

T 4 =
∑

a1,...,a6
ā1,...,ā6

[ 6∏
i=1

Jaiāi

]
Ta1,a2,a3Ta4,a5,ā3Tā4,ā2,a6Tā1,ā5,ā6 (2)

I for all c, ac and āc ∈ [1, 2N ]

I T 4 denotes the invariant
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Symplectic invariants

Algorithm 1 : “Naive”
1: Tens = 0
2: for a1 ← 0, size do
3: for a2 ← 0, size do
4: for a3 ← 0, size do
5: A = T [a1][a2][a3]
6: for b1 ← 0, size do
7: TAB = J[a1][b1]
8: for b2 ← 0, size do
9: for b3 ← 0, size do
10: TABB = TAB ∗ A ∗ T [b1][b2][b3]
11: for c1 ← 0, size do
12: for c2 ← 0, size do
13: TABC = TABB ∗ J[a2][c2]
14: for c3 ← 0, size do
15: TABCC = TABC ∗ T [c1][c2][c3] ∗ J[b3][c3]
16: for d1 ← 0, size do
17: TABCD = TABCC ∗ J[c1][d1]
18: for d2 ← 0, size do
19: TABCDD = TABCD ∗ J[b2][d2]
20: for d3 ← 0, size do
21: Tens = Tens + TABCDD ∗ T [d1][d2][d3] ∗ J[a3][d3]
22: end for
23: end for
24: end for
25: end for
26: end for
27: end for
28: end for
29: end for
30: end for
31: end for
32: end for
33: end for

12 (TWELVE) nested loops



On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants
Symplectic invariants

Some algebraic properties

The matrix J has some symmetries :

J =

(
0 IN
−IN 0

)
, J2 = −I2N , (3)

Hence the tensor contraction becomes :

T 4 =
∑

I⊂{1,2,...,6}

(−1)6−|I|
∏
l∈I

[ ∑
al,āl

δāl,al+N

]
×
∏
l/∈I

[ ∑
al,āl

δal,āl+N

]
Ta1,a2,a3Ta4,a5,ā3Tā4,ā2,a6Tā1,ā4,ā6 .
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Symplectic invariants

Algorithm 2 : exploiting the aforementioned properties

1: Tens = TE = T 1 = T 2 = T 3 = T 4 = T 5 =

T 12 = T 13 = T 14 = T 16 = T 23 = T 24 = T 26 =

T 123 = T 126 = T 134 = 0

2: N = size/2

3: for a4 ←, N do
4: A4 = a4 + N
5: for a2 ← 0, N do
6: A2 = a2 + N
7: for a6 ← 0, N do
8: A6 = a6 + N
9: W 1 = T [a4][a2][a6]

10: W 2 = T [a4][a2][a6]

11: W 3 = T [a4][a2][A6]

12: W 4 = T [a4][a2][a6]

13: W 5 = T [a4][a2][A6]

14: W 6 = T [a4][a2][A6]

15: W 7 = T [a4][a2][A6]

16: for a1 ← 0, N do
17: A1 = a1 + N
18: for a5 ← 0, N do
19: A5 = a5 + N
20: Z1 = T [a1][a5][a6]

21: Z2 = T [a1][a5][a6]

22: Z6 = T [a1][a5][A6]

23: T 5 = W 3 ∗ T [a1][A5][a6]
24: TE = W 4 ∗ T [a1][A5][A6]

25: T 1 = W 3 ∗ Z2

26: T 13 = T 1

27: T 2 = W 5 ∗ Z1

28: T 23 = T 2

29: T 3 = W 3 ∗ Z1
30: T 4 = W 6 ∗ Z1

31: T 12 = W 5 ∗ Z2

32: T 14 = W 6 ∗ Z2
33: T 134 = T 14

34: T 16 = W 1 ∗ Z6

35: T 24 = W 7 ∗ Z1

36: T 26 = W 2 ∗ T [a1][a5][A6]

37: T 123 = W 5 ∗ Z2

38: T 126 = W 2 ∗ Z6

39: for a3 ← 0, N do
40: A3 = a3 + N
41: TE+ = TE ∗ T [a1][a2][a3] ∗ T [a4][a5][a3]

42: T 5+ = T 5 ∗ T [a1][a2][a3] ∗ T [a4][a5][a3]

43: X7Y 5 = T [a1][a2][a3] ∗ T [a4][A5][a3]

44: T 1+ = T 1 ∗X7Y 5

45: T 16+ = T 16 ∗X7Y 5

46: T 2+ = T 2 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

47: T 3+ = T 3 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

48: T 4+ = T 4 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

49: T 12+ = T 12 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

50: T 13+ = T 13 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

51: T 14+ = T 14 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

52: T 23+ = T 23 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]
53: T 24+ = T 24 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

54: T 26+ = T 26 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

55:
T 123+ = T 123 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

56:
T 126+ = T 126 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

57:
T 134+ = T 134 ∗ T [a1][a2][a3] ∗ T [a4][A5][a3]

58: end for
59: end for
60: end for
61: end for
62: end for
63: end for
64: Tens = 4∗(TE+T 12+T 13+T 14+T 16+T 23+T 24+

T 26−(T 1+T 2+T 3+T 4+T 5+T 123+T 126+T 134))

“Only” 6 nested loops
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Symbolic computation

Symbolic computation

Let’s compute polynomial expressions by hand :
I P1 = x1, P2 = x2

I P1 + P2 = x1 + x2

I P1 = x1 + x2 + x3 + x4, P2 = x2

I P1 + P2 = x1 + 2 ∗ x2 + x3 + x4

I P1 = x1 + x2 + x3 + x4, P2 = x2 + x4 + x6 + x8

I P1 + P2 = x1 + 2 ∗ x2 + x3 + 2 ∗ x4 + x6 + x8

I P1 = x1 + x2 + x3 + x4, P2 = −x1 − x2 − x3 − x4

I P1 + P2 = x1 − x1 + x2 − x2 + x3 − x3 + x4 − x4
I P1 + P2 = 0 + 0 + 0 + 0

→ The computation time depends on the number of elements in the
polynomial
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Symbolic computation
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Symbolic computation

Computation time : multiplication

Operation type : P1 = 2 ∗ P2
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Symbolic computation

Computation time : addition

Operation type : P1 = P2 + P3
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Parallel computation

Parallelizing the computation : domain decomposition

Naive approach : domain decomposition

Problem : not all the subparts of the
matrix will take the same time
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Parallel computation

Parallelizing the computation : load balancing

Other problem : remember the computation time of our polynomials
I Process 1 : x1 + x2 − x1 − x2

I Process 2 : x1 + x2 + x1 + x3

→ Process 1 will compute a lot faster than process 2

We need automatic, dynamic load balancing

→ Use a master-worker scheme.
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Parallel computation

Master-worker ?

Master

Worker

Worker

Worker

input data distribution

result = 0
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Master-worker ?

Master

Worker

Worker

Worker

P0
result = P0

formation of the global result
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Master-worker ?

Master

Worker

Worker

Worker

result = P0

new input data
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Master-worker ?

Master

Worker

Worker

Worker
formation of the global result

P1

result = P0+P1
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Worker
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Master-worker ?

Master

Worker

Worker

Worker
formation of the global result

P2
result = P0+P1+P2
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On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants
Parallel computation

Master-worker ?

Master

Worker

Worker

Worker

result = P0+P1+P2+P3



On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants
Parallel computation

Master-worker ?

Traditional master-worker :
I The master maintains two queues : data and results
I The master sends chunks of data to the workers
I The workers compute partial sums
I The master gets results from the workers, combines them to form the

global result

In our case :
I The workers send partial sums
I The master adds them to form the global sum (the invariant)

Problem : this global sum gets bigger and bigger

→ Bottleneck on the master, busy adding polynomials



On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants
Parallel computation

Delegate the sum
Bottleneck on the master
I Ask a worker to compute this sum
I The workers can have two different types of tasks :

I Compute a partial sum (inner loops)
I Add partial sums to form the global sum

However :
I Adds interactions between the master and a worker
I A worker computing the global sum is not computing any partial sum
→ Switch to this scheme when the global sums are too expensive

Master

Worker

Worker

Worker

∑5
n=0 Pn
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Parallel computation

Hierarchical master-worker

Another reason why the master can become a
bottleneck :
I Workers’ requests are too frequent
I Granularity is too small, too many workers
→ Use a hierarchical pattern

I The workers request work from a foremen
I The foremen request work from the

master
I The master sends a bigger chunk of work

to each foreman
I The foremen split this chunk into smaller

chunks
I The foremen compute intermediate sums,

or delegate to a worker

Master

Foreman Foreman

Worker Worker Worker Worker

If the master becomes a bottleneck, how to tell why ?
I Use measurements
I Which time proportion does the master spend outside communications ?
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Stateful worker
The main challenge is the computation of the global sum
I Do not centralize it on the master
I Keep the partial sums on the workers, add them while waiting for more

data
I Only at the end, add them to form the global polynomial (tree)

Algorithm 1 Master
/* prepare parameter sets */
for a4 ← 0, N do
for a2 ← 0, N do
for a6 ← 0, N do
params.push_back({ a4,a2,a6)})

end for
end for

end for
/* distribute parameter sets */

while !parameters.empty() do
src = recv( request, ANY_SOURCE )
p = params.pop()
send( src, p, TAG_WORK )
/* wait for all the workers */
while running() do
src = recv( request, ANY_SOURCE )
send( src, 0, TAG_END )
/* global sum */
Tens = reduction_sum()

Algorithm 2 Worker
Tens = 0
T = 0
while true do
/* ask for some work */
send( root, 0, TAG_REQ )
/* as I wait for a parameter set, add my polynomials
*/
req = Irecv( ROOT, ANY_TAG )
if T != 0 then
Tens += T
p, tag = wait( req )
if tag == TAG_END then
break
/* compute a polynomial for the parameters I have
received */
T = compute( p )
/* global sum */
reduction_sum(Tens)
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Stateful worker

Master

Worker

Worker

Worker

Input data distribution

result = 0

R1 = 0

R2 = 0

R3 = 0
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Stateful worker

Master

Worker

Worker

Worker

Local computations

result = 0

R1 = 0

R2 = 0

R3 = 0
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Stateful worker

Master

Worker

Worker

Worker

Keep the local, partial result

result = 0

R2 = 0

R3 = 0

R1 = P0
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Stateful worker

Master

Worker

Worker

Worker

Keep the local, partial result

result = 0

R3 = 0

R1 = P0

R2 = P1
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Stateful worker

Master

Worker

Worker

Worker

New input data

result = 0

R3 = 0

R1 = P0

R2 = P1



On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants
Parallel computation

Stateful worker

Master

Worker

Worker

Worker

Local addition

result = 0

R3 = 0

R2 = P1

R1 = P0+P2
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Stateful worker

Master

Worker

Worker

Worker

result = 0
R1

R2

R3
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Stateful worker

Master

Worker

Worker

Worker
Formation of the global result

result = R1+R2+R3



On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants
Performance evaluation

Outline

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation
Comparison of the different schemes
Combining the algorithms

Conclusion



On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants
Performance evaluation

Experimental setup

Software environment
I OpenMPI 4.1, Linux kernel 4.9.0, Debian 9.8, g++ 8.3.0

Hardware
I Grid’5000 cluster : Parapide (Rennes)
I 20 nodes, 2x Intel Xeon X5570 CPUs (4 cores/CPU), 24 GB of memory
I 20 Gb InfiniBand + GigaEthernet

Symbolic computing libraries :
I GiNaC 1.7.6 (not Gignac !)
I Obake : successor of Piranha, better on multivariate polynomials
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Comparison of the different schemes

Small tensor (N=4, size=8)

Using Obake.
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Performance evaluation

Combining the algorithms

Medium tensor (N=6, size=12)

Using Obake. Blue bottom line : when the switch between master-worker and
addition on a worker happens.
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Performance evaluation

Combining the algorithms

Large tensor (N=8, size=16) 1/2

Using Obake. At small scale : we switch too late.
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Performance evaluation

Combining the algorithms

Large tensor (N=8, size=16) 2/2

Using GiNaC : the polynomial operations do not take the same time.
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Hierarchical ?

We have never seen the algorithm switch to the hierarchical scheme
I Policy : when the master is overloaded by requests → switch to the

hierarchical scheme
I Maybe because when a lot of requests are received, a lot of additions are

needed (intermediate and partial)
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Conclusion 1/2

In this problem, the computational work varies during the computation
I We were not sure it would (annulling terms → reduced computation time)
I Increases in particular in the critical path (global sum)
I Non-linear

Goal : get as much as we can away from the critical path

Granularity of the computation :
I Increase the number of workers → refine the granularity to keep them

busy
I Too small grain → computation time too short wrt communications

Scalability :
I Increase the size of the problem
I Workers have more work
I More (expensive) polynomial additions (in the critical path)
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Conclusion 2/2

Polynomial additions to for the global sum
I Become expensive quickly

I Switch to a pattern that computes them on a worker
I Good choice most of the times, switch quickly

I Stateful workers : much faster... except to form the global polynomial
I most of the times its cost is higher than the gain during the computation.

Hierarchical scheme
I Never encountered a case where the switch policy applies
I The workload on each worker increases faster than the congestion on the

master (as the size increases to scale)
I Larger problem → larger polynomials to add

Dynamic workload, evolving (roughly) monotonically : advantage of run-time
performance measurements to make decisions.
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