On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants

Joseph Ben Geloun, Camille Coti, Allen D. Malony
LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, France
University of Oregon, USA
Séminaire LATECE, UQAM
April 7th, 2022

Roadmap

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation
Comparison of the different schemes Combining the algorithms

Conclusion

Outline

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation
Comparison of the different schemes
Combining the algorithms

Conclusion

Group invariants

Group invariants

- define quantum field theory interaction

To quantize gravity

- tensor models
- address classical Lie group (unitary and orthogonal) invariants in their construction.

Classical Lie groups :

- orthogonal
- unitary
- real symplectic group $S p(2 N)$
Matrix:

a_{14}	a_{24}	a_{34}	a_{44}
a_{13}	a_{23}	a_{33}	a_{43}
a_{12}	a_{22}	a_{32}	a_{42}
a_{11}	a_{21}	a_{31}	a_{41}

Tensor:
 Goal : enumerate symplectic invariants

- Applications : e.g., problems in condensed matter, black hole physics

Calculation of symplectic invariants

Relies on tensor contraction

- the tensor contains formal, real variables
- result : a polynomial made of these variables
- is the invariant equal to 0 ?

Example : rank $d=3$

- contraction of 4 tensors
- called complete graph contraction

Goal : show that for $N>3$, the invariant is not identically null

Calculation of symplectic invariants (1/2)

Symplectic matrix J

- size $2 N \times 2 N$

$$
J=\left(\begin{array}{cc}
0 & I_{N} \tag{1}\\
-I_{N} & 0
\end{array}\right), \quad J^{2}=-I_{2 N},
$$

with :

- I_{N}, for all N the identity matrix of $M_{N}(\mathbb{R})$
- A matrix $K \in S p(2 N)$ obeys $K J K^{T}=J$, and $K^{T} J K=J$

Interactions of $S p(2 N)$ tensor models:

- contractions of an even number of tensors T
- contraction metric: the matrix J

Calculation of symplectic invariants (2/2)

Physical applications:

- in particular, contraction of 4 tensors as follows:

$$
\begin{equation*}
T^{4}=\sum_{\substack{a_{1}, \ldots, a_{6} \\ \bar{a}_{1}, \ldots, \bar{a}_{6}}}\left[\prod_{i=1}^{6} J_{a_{i} \bar{a}_{i}}\right] T_{a_{1}, a_{2}, a_{3}} T_{a_{4}, a_{5}, \bar{a}_{3}} T_{\bar{a}_{4}, \bar{a}_{2}, a_{6}} T_{\bar{a}_{1}, \bar{a}_{5}, \bar{a}_{6}} \tag{2}
\end{equation*}
$$

- for all c, a_{c} and $\bar{a}_{c} \in[1,2 N]$
- T^{4} denotes the invariant

Algorithm 1: "Naive"

```
Tens \(=0\)
for \(a 1 \leftarrow 0\), size do
    for \(a 2 \leftarrow 0\), size do
        for \(a 3 \leftarrow 0\), size do
            \(A=T[a 1][a 2][a 3]\)
            for \(b 1 \leftarrow 0\), size do
            \(T A B=J[a 1][b 1]\)
            for \(b 2 \leftarrow 0\), size do
            for \(b 3 \leftarrow 0\), size do
                \(T A B B=T A B * A * T[b 1][b 2][b 3]\)
                for \(c 1 \leftarrow 0\), size do
                    for \(c 2 \leftarrow 0\), size do
                    \(T A B C=T A B B * J[a 2][c 2]\)
                    for \(c 3 \leftarrow 0\), size do
                    \(T A B C C=T A B C * T[c 1][c 2][c 3] * J[b 3][c 3]\)
                    for \(d 1 \leftarrow 0\), size do
                            \(T A B C D=T A B C C * J[c 1][d 1]\)
                            for \(d 2 \leftarrow 0\), size do
                    \(T A B C D D=T A B C D * J[b 2][d 2]\)
                            for \(d 3 \leftarrow 0\), size do
                            Tens \(=\) Tens \(+T A B C D D * T[d 1][d 2][d 3] * J[a 3][d 3]\)
                            end for
                            end for
                    end for
                end for
                end for
            end for
            end for
        end for
        end for
    end for
        end for
    end for
```


Some algebraic properties

The matrix J has some symmetries :

$$
J=\left(\begin{array}{cc}
0 & I_{N} \tag{3}\\
-I_{N} & 0
\end{array}\right), \quad J^{2}=-I_{2 N},
$$

Hence the tensor contraction becomes:

$$
\begin{array}{r}
T^{4}=\sum_{I \subset\{1,2, \ldots, 6\}}(-1)^{6-|I|} \prod_{l \in I}\left[\sum_{a_{l}, \bar{a}_{l}} \delta_{\bar{a}_{l}, a_{l}+N}\right] \\
\times \prod_{l \notin I}\left[\sum_{a_{l}, \bar{a}_{l}} \delta_{a_{l}, \bar{a}_{l}+N}\right] T_{a_{1}, a_{2}, a_{3}} T_{a_{4}, a_{5}, \bar{a}_{3}} T_{\bar{a}_{4}, \bar{a}_{2}, a_{6}} T_{\bar{a}_{1}, \bar{a}_{4}, \bar{a}_{6}} .
\end{array}
$$

Algorithm 2 : exploiting the aforementioned properties

```
Tens \(=T E=T 1=T 2=T 3=T 4=T 5=\)
\(T 12=T 13=T 14=T 16=T 23=T 24=T 26=\)
\(T 123=T 126=T 134=0\)
\(N=s i z e / 2\)
for \(a 4 \leftarrow, N\) do
    \(A_{4}=a 4+N\)
    for \(a_{2} \leftarrow 0, N\) do
    \(A_{2}=a_{2}+N\)
    for \(a_{6} \leftarrow 0, N\) do
        \(A_{6}=a 6+N\)
        \(W_{1}=T\left[a_{4}\right]\left[a_{2}\right][a 6]\)
        \(W_{2}=T\left[a_{4}\right]\left[a_{2}\right][a 6]\)
        \(W 3=T\left[a_{4}\right]\left[a_{2}\right][A 6]\)
        \(W 4=T[a 4][a 2][a 6]\)
        \(W 5=T\left[a_{4}\right][a 2][A 6]\)
        \(W 6=T\left[a_{4}\right]\left[a_{2}\right][A 6]\)
        \(W 7=T\left[a_{4}\right]\left[a_{2}\right][A 6\)
        for \(a_{1} \leftarrow 0, N\) do
        \(A_{1}=a_{1}+N\)
        for \(a_{5} \leftarrow 0, N\) do
            \(A_{5}=a_{5}+N\)
            \(Z_{1}=T\left[a_{1}\right][a 5][a 6]\)
            \(Z_{2}=T\left[a_{1}\right]\left[a_{5}\right][a 6]\)
            \(Z 6=T[a 1][a 5][A 6]\)
            \(T 5=W 3 * T\left[a_{1}\right][A 5][a 6]\)
            \(T E=W 4 * T\left[a_{1}\right]\left[A_{5}\right][A 6]\)
            \(T 1=W 3 * Z_{2}\)
            \(T 13=T 1\)
            \(T 2=W 5 * Z 1\)
            \(T 23=T 2\)
            \(T 3=W 3 * Z 1\)
            \(T 4=W 6 * Z\)
            \(T 12=W 5 * Z_{2}\)
            \(T 14=W 6 * Z_{2}\)
            \(T 134=T 14\)
```

$T 16=W_{1} * Z_{6}$
$T 24=W 7 * Z_{1}$
$T 26=W_{2} * T\left[a_{1}\right]\left[a_{5}\right][A 6]$
$T 123=W 5 * Z_{2}$
$T 126=W_{2} * Z 6$
for $a 3 \leftarrow 0, N$ do
$A 3=a 3+N$
$T E+=T E * T\left[a_{1}\right]\left[a_{2}\right]\left[a_{3}\right] * T\left[a_{4}\right]\left[a_{5}\right]\left[a_{3}\right]$
$T 5+=T 5 * T[a 1][a 2][a 3] * T[a 4][a 5][a 3]$
$X_{7} Y 5=T[a 1]\left[a_{2}\right][a 3] * T[a 4][A 5][a 3]$
$T 1+=T 1 * X_{7} Y_{5}$
$T 16+=T 16 * X_{7} Y_{5}$
$T 2+=T 2 * T[a 1]\left[a_{2}\right][a 3] * T[a 4][A 5][a 3]$
$T 3+=T 3 * T\left[a_{1}\right]\left[a_{2}\right][a 3] * T[a 4][A 5][a 3]$
$T 4+=T 4 * T[a 1][a 2][a 3] * T[a 4][A 5][a 3]$
$T 12+=T 12 * T[a 1][a 2][a 3] * T[a 4][A 5][a 3]$
$T 13+=T 13 * T\left[a_{1}\right]\left[a_{2}\right]\left[a_{3}\right] * T\left[a_{4}\right][A 5][a 3]$
$T 14+=T 14 * T\left[a_{1}\right]\left[a_{2}\right]\left[a_{3}\right] * T\left[a_{4}\right][A 5][a 3$
$T 23+=T 23 * T\left[a_{1}\right]\left[a_{2}\right]\left[a_{3}\right] * T\left[a_{4}\right][A 5]\left[a_{3}\right]$
$T 24+=T 24 * T[a 1][a 2][a 3] * T[a 4][A 5][a 3$
$T 26+=T 26 * T\left[a_{1}\right][a 2][a 3] * T\left[a_{4}\right][A 5][a 3]$
$T 123+=T 123 * T[a 1][a 2][a 3] * T[a 4][A 5][a 3]$
$T 126+=T 126 * T[a 1][a 2][a 3] * T[a 4][A 5][a 3]$
$T 134+=T 134 * T[a 1][a 2][a 3] * T[a 4][A 5][a 3]$
end for
end for
end for
end for
end for
end for
Tens $=4 *(T E+T 12+T 13+T 14+T 16+T 23+T 24+$
$T 26-(T 1+T 2+T 3+T 4+T 5+T 123+T 126+T 134))$

Outline

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation
Comparison of the different schemes
Combining the algorithms

Conclusion

Symbolic computation

Let's compute polynomial expressions by hand :

- $P_{1}=x_{1}, P_{2}=x_{2}$
- $P_{1}+P_{2}=x_{1}+x_{2}$

Symbolic computation

Let's compute polynomial expressions by hand :

- $P_{1}=x_{1}, P_{2}=x_{2}$
- $P_{1}+P_{2}=x_{1}+x_{2}$
- $P_{1}=x_{1}+x_{2}+x_{3}+x_{4}, P_{2}=x_{2}$
- $P_{1}+P_{2}=x_{1}+2 * x_{2}+x_{3}+x_{4}$

Symbolic computation

Let's compute polynomial expressions by hand :

- $P_{1}=x_{1}, P_{2}=x_{2}$
- $P_{1}+P_{2}=x_{1}+x_{2}$
- $P_{1}=x_{1}+x_{2}+x_{3}+x_{4}, P_{2}=x_{2}$
- $P_{1}+P_{2}=x_{1}+2 * x_{2}+x_{3}+x_{4}$
- $P_{1}=x_{1}+x_{2}+x_{3}+x_{4}, P_{2}=x_{2}+x_{4}+x_{6}+x_{8}$
- $P_{1}+P_{2}=x_{1}+2 * x_{2}+x_{3}+2 * x_{4}+x_{6}+x_{8}$

Symbolic computation

Let's compute polynomial expressions by hand :

- $P_{1}=x_{1}, P_{2}=x_{2}$
- $P_{1}+P_{2}=x_{1}+x_{2}$
- $P_{1}=x_{1}+x_{2}+x_{3}+x_{4}, P_{2}=x_{2}$
- $P_{1}+P_{2}=x_{1}+2 * x_{2}+x_{3}+x_{4}$
- $P_{1}=x_{1}+x_{2}+x_{3}+x_{4}, P_{2}=x_{2}+x_{4}+x_{6}+x_{8}$
- $P_{1}+P_{2}=x_{1}+2 * x_{2}+x_{3}+2 * x_{4}+x_{6}+x_{8}$
- $P_{1}=x_{1}+x_{2}+x_{3}+x_{4}, P_{2}=-x_{1}-x_{2}-x_{3}-x_{4}$
$-P_{1}+P_{2}=x_{1}-x_{1}+x_{2}-x_{2}+x_{3}-x_{3}+x_{4}-x_{4}$
- $P_{1}+P_{2}=0+0+0+0$
\rightarrow The computation time depends on the number of elements in the polynomial

Computation time : multiplication
Operation type : $P_{1}=2 * P_{2}$

Computation time : addition

Operation type : $P_{1}=P_{2}+P_{3}$

Outline

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation
Comparison of the different schemes
Combining the algorithms

Conclusion

Parallelizing the computation : domain decomposition

Naive approach : domain decomposition

Problem : not all the subparts of the matrix will take the same time

Parallelizing the computation : load balancing

Other problem : remember the computation time of our polynomials

- Process 1: $x_{1}+x_{2}-x_{1}-x_{2}$
- Process 2: $x_{1}+x_{2}+x_{1}+x 3$
\rightarrow Process 1 will compute a lot faster than process 2

We need automatic, dynamic load balancing
\rightarrow Use a master-worker scheme.

Master-worker?

$$
\text { result }=0
$$

input data distribution

Master-worker?

Master-worker?

$$
\text { result }=0
$$

input data distribution

Master-worker?

input data distribution

$$
\text { result }=0
$$

Master-worker?

formation of the global result

$$
\text { result }=P 0
$$

Master-worker?

Master-worker?

formation of the global result

result $=P 0+P 1$

Master-worker?

result $=P 0+P 1$
new input data

Master-worker?

result $=P 0+P 1$

Master-worker?

formation of the global result

Master-worker?

Master-worker?

result $=P 0+P 1+P 2$

Master-worker?

formation of the global result

result $=P 0+P 1+P 2+P 3$

Master-worker?

result $=P 0+P 1+P 2+P 3$

new input data

Master-worker?

Master-worker?

Traditional master-worker :

- The master maintains two queues : data and results
- The master sends chunks of data to the workers
- The workers compute partial sums
- The master gets results from the workers, combines them to form the global result

In our case:

- The workers send partial sums
- The master adds them to form the global sum (the invariant)

Problem : this global sum gets bigger and bigger
\rightarrow Bottleneck on the master, busy adding polynomials

Delegate the sum

Bottleneck on the master

- Ask a worker to compute this sum
- The workers can have two different types of tasks:
- Compute a partial sum (inner loops)
- Add partial sums to form the global sum

However:

- Adds interactions between the master and a worker
- A worker computing the global sum is not computing any partial sum
\rightarrow Switch to this scheme when the global sums are too expensive

Hierarchical master-worker

Another reason why the master can become a bottleneck:

- Workers' requests are too frequent
- Granularity is too small, too many workers
\rightarrow Use a hierarchical pattern
- The workers request work from a foremen
- The foremen request work from the master
- The master sends a bigger chunk of work to each foreman
- The foremen split this chunk into smaller chunks
- The foremen compute intermediate sums,
 or delegate to a worker

If the master becomes a bottleneck, how to tell why?

- Use measurements
- Which time proportion does the master spend outside communications?

Stateful worker

The main challenge is the computation of the global sum

- Do not centralize it on the master
- Keep the partial sums on the workers, add them while waiting for more data
- Only at the end, add them to form the global polynomial (tree)

```
Algorithm 1 Master
    /* prepare parameter sets */
    for a4\leftarrow0,N do
        for a2\leftarrow0,N do
            for a6}\leftarrow0,N d
            params.push_back({ a4,a2,a6)})
        end for
        end for
    end for
    /* distribute parameter sets */
    while !parameters.empty() do
        src = recv( request, ANY_SOURCE )
        p = params.pop()
        send( src, p, TAG_WORK )
    /* wait for all the workers */
    while running() do
        src = recv( request, ANY_SOURCE )
        send( sre, 0, TAG_END )
    /* global sum */
    Tens = reduction_sum()
```

```
Algorithm 2 Worker
    Tens \(=0\)
    \(\mathrm{T}=0\)
    while true do
        /* ask for some work */
        send( root, 0, TAG_REQ )
    /* as I wait for a parameter set, add my polynomials
    */
        req \(=\operatorname{Irecv}(\) ROOT, ANY TAG )
        if \(T!=0\) then
            Tens \(+=\mathbf{T}\)
        p, tag \(=\) wait ( req )
        if tag == TAG_END then
        break
        /* compute a polynomial for the parameters I have
    received */
        \(\mathrm{T}=\) compute( p )
    /* global sum */
    reduction_sum(Tens)
```


Stateful worker

Stateful worker

Local computations

Stateful worker

Stateful worker

New input data

Stateful worker

result $=0$

Stateful worker

result $=0$

New input data

Stateful worker

Local addition

Stateful worker

New input data

Stateful worker

result $=0$

Master

Stateful worker

Stateful worker

Formation of the global result

$$
\text { result }=R 1+R 2+R 3
$$

Outline

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation
Comparison of the different schemes
Combining the algorithms

Conclusion

Experimental setup

Software environment

- OpenMPI 4.1, Linux kernel 4.9.0, Debian 9.8, g++ 8.3.0

Hardware

- Grid'5000 cluster : Parapide (Rennes)
- 20 nodes, $2 \times$ Intel Xeon X5570 CPUs (4 cores/CPU), 24 GB of memory
- 20 Gb InfiniBand + GigaEthernet

Symbolic computing libraries :

- GiNaC 1.7.6 (not Gignac!)
- Obake : successor of Piranha, better on multivariate polynomials
$\left\llcorner_{\text {Comparison of the different schemes }}\right.$

Small tensor $(N=4$, size $=8)$

Using Obake.

$\left\llcorner_{\text {Combining the algorithms }}\right.$
Medium tensor $(\mathrm{N}=6$, size $=12)$

Using Obake. Blue bottom line : when the switch between master-worker and addition on a worker happens.

$\left\llcorner_{\text {Combining the algorithms }}\right.$
Large tensor $(\mathrm{N}=8$, size $=16) 1 / 2$

Using Obake. At small scale : we switch too late.

$\left\llcorner_{\text {Combining the algorithms }}\right.$
Large tensor $(N=8 \text {, size }=16)^{2 / 2}$

Using GiNaC : the polynomial operations do not take the same time.

$\left\llcorner_{\text {Combining the algorithms }}\right.$

Hierarchical?

We have never seen the algorithm switch to the hierarchical scheme

- Policy : when the master is overloaded by requests \rightarrow switch to the hierarchical scheme
- Maybe because when a lot of requests are received, a lot of additions are needed (intermediate and partial)

Outline

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation
Comparison of the different schemes
Combining the algorithms

Conclusion

Conclusion 1/2

In this problem, the computational work varies during the computation

- We were not sure it would (annulling terms \rightarrow reduced computation time)
- Increases in particular in the critical path (global sum)
- Non-linear

Goal : get as much as we can away from the critical path
Granularity of the computation :

- Increase the number of workers \rightarrow refine the granularity to keep them busy
- Too small grain \rightarrow computation time too short wrt communications

Scalability :

- Increase the size of the problem
- Workers have more work
- More (expensive) polynomial additions (in the critical path)

Conclusion 2/2

Polynomial additions to for the global sum

- Become expensive quickly
- Switch to a pattern that computes them on a worker
- Good choice most of the times, switch quickly
- Stateful workers : much faster... except to form the global polynomial
- most of the times its cost is higher than the gain during the computation.

Hierarchical scheme

- Never encountered a case where the switch policy applies
- The workload on each worker increases faster than the congestion on the master (as the size increases to scale)
- Larger problem \rightarrow larger polynomials to add

Dynamic workload, evolving (roughly) monotonically : advantage of run-time performance measurements to make decisions.

