On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants

Joseph Ben Geloun, Camille Coti, Allen D. Malony

LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, France University of Oregon, USA

> Séminaire LATECE, UQAM April 7th, 2022

Roadmap

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation Comparison of the different schemes Combining the algorithms

Conclusion

Outline

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation Comparison of the different schemes Combining the algorithms

Conclusion

Group invariants

Group invariants

define quantum field theory interaction

To quantize gravity

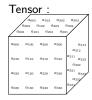
- tensor models
- address classical Lie group (unitary and orthogonal) invariants in their construction.

Classical Lie groups :

- orthogonal
- unitary
- real symplectic group Sp(2N)
- Goal : enumerate symplectic invariants
 - > Applications : e.g., problems in condensed matter, black hole physics

Matrix :

a14	a_{24}	a_{34}	a_{44}
a ₁₃	a_{23}	a_{33}	a_{43}
a ₁₂	a_{22}	a_{32}	a_{42}
<i>a</i> ₁₁	a_{21}	a_{31}	a_{41}



Calculation of symplectic invariants

Relies on tensor contraction

- the tensor contains formal, real variables
- result : a polynomial made of these variables
- ▶ is the invariant equal to 0?

Example : rank d = 3

- contraction of 4 tensors
- called complete graph contraction

Goal : show that for N > 3, the invariant is not identically null

Calculation of symplectic invariants (1/2)

Symplectic matrix J

 \blacktriangleright size $2N \times 2N$

$$J = \begin{pmatrix} 0 & I_N \\ -I_N & 0 \end{pmatrix}, \qquad J^2 = -I_{2N},$$
(1)

with :

- I_N , for all N the identity matrix of $M_N(\mathbb{R})$
- A matrix $K \in Sp(2N)$ obeys $KJK^T = J$, and $K^TJK = J$

Interactions of Sp(2N) tensor models :

- \blacktriangleright contractions of an even number of tensors T
- contraction metric : the matrix J

Calculation of symplectic invariants (2/2)

Physical applications :

▶ in particular, contraction of 4 tensors as follows :

$$T^{4} = \sum_{\substack{a_{1},\dots,a_{6}\\\bar{a}_{1},\dots,\bar{a}_{6}}} \left[\prod_{i=1}^{6} J_{a_{i}\bar{a}_{i}} \right] T_{a_{1},a_{2},a_{3}} T_{a_{4},a_{5},\bar{a}_{3}} T_{\bar{a}_{4},\bar{a}_{2},a_{6}} T_{\bar{a}_{1},\bar{a}_{5},\bar{a}_{6}}$$
(2)

- for all c, a_c and $\bar{a}_c \in [1, 2N]$
- \blacktriangleright T^4 denotes the invariant

Algorithm 1 : "Naive"

```
1: Tens = 0
2: for a1 \leftarrow 0, size do
      for a2 \leftarrow 0, size do
3:
       for a3 \leftarrow 0, size do
A٠
         A = T[a1][a2][a3]
5·
6:
        for b1 \leftarrow 0, size do
7:
          TAB = J[a1][b1]
8:
          for b2 \leftarrow 0, size do
9:
           for b3 \leftarrow 0, size do
             TABB = TAB * A * T[b1][b2][b3]
10:
11:
            for c1 \leftarrow 0, size do
12:
              for c2 \leftarrow 0, size do
13:
               TABC = TABB * J[a2][c2]
14:
               for c3 \leftarrow 0, size do
                TABCC = TABC * T[c1][c2][c3] * J[b3][c3]
15:
                for d1 \leftarrow 0, size do
16:
17:
                  TABCD = TABCC * J[c1][d1]
                  for d2 \leftarrow 0, size do
18:
                   TABCDD = TABCD * J[b2][d2]
19:
                   for d3 \leftarrow 0, size do
20:
                    Tens = Tens + TABCDD * T[d1][d2][d3] * J[a3][d3]
21:
22:
                   end for
23:
                  end for
                end for
24:
25:
               end for
26:
              end for
             end for
27:
28:
           end for
29:
          end for
         end for
30:
31 .
       end for
      end for
32:
33. end for
```

12 (TWELVE) nested loops

Some algebraic properties

The matrix J has some symmetries :

$$J = \begin{pmatrix} 0 & I_N \\ -I_N & 0 \end{pmatrix}, \qquad J^2 = -I_{2N},$$
(3)

Hence the tensor contraction becomes :

$$T^{4} = \sum_{I \subset \{1, 2, \dots, 6\}} (-1)^{6-|I|} \prod_{l \in I} \left[\sum_{a_{l}, \bar{a}_{l}} \delta_{\bar{a}_{l}, a_{l}+N} \right]$$
$$\times \prod_{l \notin I} \left[\sum_{a_{l}, \bar{a}_{l}} \delta_{a_{l}, \bar{a}_{l}+N} \right] T_{a_{1}, a_{2}, a_{3}} T_{a_{4}, a_{5}, \bar{a}_{3}} T_{\bar{a}_{4}, \bar{a}_{2}, a_{6}} T_{\bar{a}_{1}, \bar{a}_{4}, \bar{a}_{6}} .$$

Algorithm 2 : exploiting the aforementioned properties

```
1: T_{ens} = TE = T1 = T2 = T3 = T4 = T5 =
     T_{12} = T_{13} = T_{14} = T_{16} = T_{23} = T_{24} = T_{26} =
     T_{123} = T_{126} = T_{134} = 0
2: N = size/2
 3:
    for a_4 \leftarrow N do
 4:
     A_4 = a_4 + N
 5:
      for a_2 \leftarrow 0, N do
 6·
       A_2 = a_2 \pm N
       for a_6 \leftarrow 0. N do
 7:
8:
        A6 = a6 + N
        W_1 = T[a_4][a_2][a_6]
9:
10:
        W_2 = T[a_4][a_2][a_6]
11:
        W_3 = T[a4][a2][A6]
        W_4 = T[a_4][a_2][a_6]
12:
13:
        W_5 = T[a_4][a_2][A_6]
14:
        W_{6} = T[a_{4}][a_{2}][A_{6}]
15:
        W_7 = T[a_4][a_2][A_6]
16:
        for a_1 \leftarrow 0. N do
17:
         A_1 = a_1 + N
18:
         for a5 \leftarrow 0, N do
19:
           A_5 = a_5 + N
20:
           Z_1 = T[a_1][a_5][a_6]
21:
           Z_2 = T[a_1][a_5][a_6]
           Z_6 = T[a_1][a_5][A_6]
22:
23:
           T_5 = W_3 * T[a_1][A_5][a_6]
24:
          TE = W4 * T[a1][A5][A6]
25:
           T_1 = W_3 * Z_2
26:
           T_{13} = T_1
27:
           T_2 = W_5 * Z_1
28:
           T_{23} = T_2
29:
           T_3 = W_3 * Z_1
30:
           T_4 = W_6 * Z_1
31:
           T_{12} = W_5 * Z_2
32:
           T_{14} = W_6 * Z_2
33:
           T_{134} = T_{14}
```

```
34:
                              T_{16} = W_1 * Z_6
35.
                              T_{24} = W_7 * Z_1
36:
                              T_{26} = W_2 * T[a_1][a_5][A_6]
37:
                              T_{123} = W_5 * \dot{Z}_2
                              T_{126} = W_2 * Z_6
38:
39:
                              for a_3 \leftarrow 0. N do
40:
                                 A_{3} = a_{3} + N
41·
                                TE + = TE * T[a1][a2][a3] * T[a4][a5][a3]
42:
                                 T_{5+} = T_5 * T[a_1][a_2][a_3] * T[a_4][a_5][a_3]
43.
                                 X_7Y_5 = T[a_1][a_2][a_3] * T[a_4][A_5][a_3]
ΔΔ٠
                                 T_{1+} = T_1 * X_7 Y_5
45:
                                 T_{16+} = T_{16} * X_7 Y_5
46·
                                T_{2+} = T_2 * T[a_1][a_2][a_3] * T[a_4][A_5][a_3]
                                 T_{3+} = T_3 * T[a_1][a_2][a_3] * T[a_4][A_5][a_3]
47:
48:
                                 T_{4+} = T_4 * T[a_1][a_2][a_3] * T[a_4][A_5][a_3]
40 ·
                                T_{12+} = T_{12} * T_{[a1][a2][a3]} * T_{[a4][A5][a3]}
                                T_{13+} = T_{13} * T[a_1][a_2][a_3] * T[a_4][A_5][a_3]
50:
51:
                                T_{14+} = T_{14} * T[a_1][a_2][a_3] * T[a_4][A_5][a_3]
52:
                                 T_{23+} = T_{23} * T[a_1][a_2][a_3] * T[a_4][A_5][a_3]
53:
                                 T_{24+} = T_{24} * T[a_1][a_2][a_3] * T[a_4][A_5][a_3]
                                T_{26+} = T_{26} * T[a_1][a_2][a_3] * T[a_4][A_5][a_3]
54·
55:
              T_{123+} = T_{123} * T_{[a1][a2][a3]} * T_{[a4][A5][a3]}
56:
              T_{126+} = T_{126} * T[a_1][a_2][a_3] * T[a_4][A_5][a_3]
57:
               T_{134+} = T_{134} * T_{[a1][a2][a3]} * T_{[a4][A5][a3]}
58:
                             end for
59:
                          end for
60:
                       end for
61:
                    end for
62:
                 end for
63: end for
64: Tens = 4 * (TE + T12 + T13 + T14 + T16 + T23 + T24 + T16 + T23 + T26 + T
               T_{26} - (T_1 + T_2 + T_3 + T_4 + T_5 + T_{123} + T_{126} + T_{134}))
```

"Only" 6 nested loops

Outline

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation Comparison of the different schemes Combining the algorithms

Conclusion

Let's compute polynomial expressions by hand :

▶
$$P_1 = x_1, P_2 = x_2$$

▶ $P_1 + P_2 = x_1 + x_2$

Let's compute polynomial expressions by hand :

$$P_1 = x_1, P_2 = x_2$$

$$P_1 + P_2 = x_1 + x_2$$

$$P_1 = x_1 + x_2 + x_3 + x_4, P_2 = x_2$$

$$P_1 + P_2 = x_1 + 2 * x_2 + x_3 + x_4$$

Let's compute polynomial expressions by hand :

$$P_1 = x_1, P_2 = x_2$$

$$P_1 + P_2 = x_1 + x_2$$

$$P_1 = x_1 + x_2 + x_3 + x_4, P_2 = x_2$$

$$P_1 + P_2 = x_1 + 2 * x_2 + x_3 + x_4$$

$$P_1 = x_1 + x_2 + x_3 + x_4, P_2 = x_2 + x_4 + x_6 + x_8$$

$$P_1 + P_2 = x_1 + 2 * x_2 + x_3 + 2 * x_4 + x_6 + x_8$$

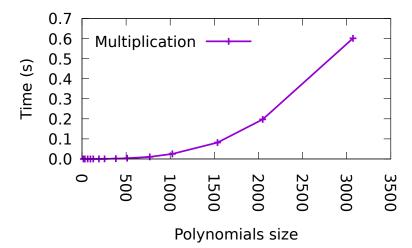
Let's compute polynomial expressions by hand :

$$\begin{array}{l} \blacktriangleright P_1 = x_1, \ P_2 = x_2 \\ \blacktriangleright P_1 + P_2 = x_1 + x_2 \\ \blacktriangleright P_1 = x_1 + x_2 + x_3 + x_4, \ P_2 = x_2 \\ \blacktriangleright P_1 + P_2 = x_1 + 2 * x_2 + x_3 + x_4 \\ \blacktriangleright P_1 = x_1 + x_2 + x_3 + x_4, \ P_2 = x_2 + x_4 + x_6 + x_8 \\ \blacktriangleright P_1 + P_2 = x_1 + 2 * x_2 + x_3 + 2 * x_4 + x_6 + x_8 \\ \blacktriangleright P_1 = x_1 + x_2 + x_3 + x_4, \ P_2 = -x_1 - x_2 - x_3 - x_4 \\ \vdash P_1 + P_2 = x_1 - x_1 + x_2 - x_2 + x_3 - x_3 + x_4 - x_4 \\ \vdash P_1 + P_2 = 0 + 0 + 0 + 0 \end{array}$$

 $\rightarrow\,$ The computation time depends on the number of elements in the polynomial

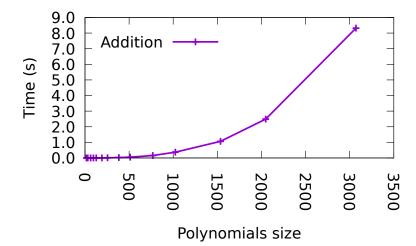
Computation time : multiplication

Operation type : $P_1 = 2 * P_2$



Computation time : addition

Operation type :
$$P_1 = P_2 + P_3$$



Outline

Symplectic invariants

Symbolic computation

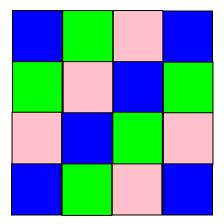
Parallel computation

Performance evaluation Comparison of the different schemes Combining the algorithms

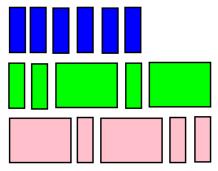
Conclusion

Parallelizing the computation : domain decomposition

Naive approach : domain decomposition



Problem : not all the subparts of the matrix will take the same time



Parallelizing the computation : load balancing

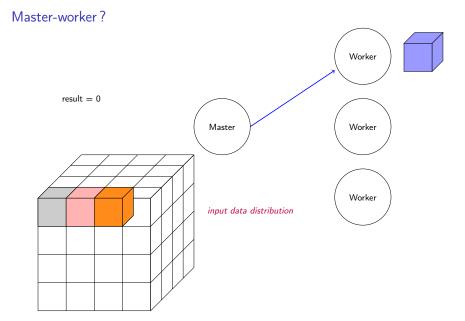
Other problem : remember the computation time of our polynomials

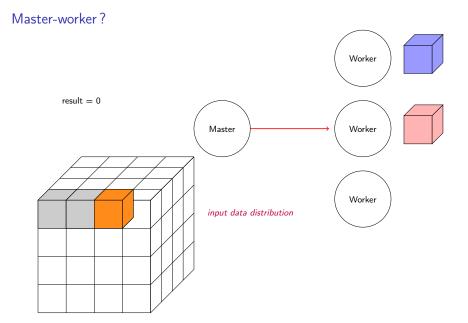
- Process $1: x_1 + x_2 x_1 x_2$
- Process 2 : $x_1 + x_2 + x_1 + x_3$
- $\rightarrow~$ Process 1 will compute a lot faster than process 2

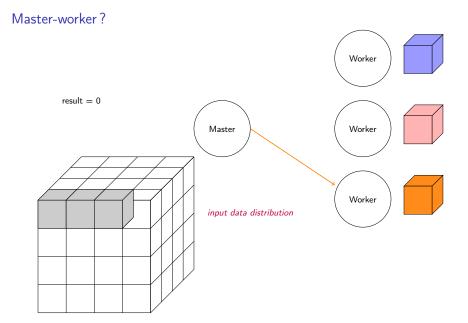
We need automatic, dynamic load balancing

 $\rightarrow~$ Use a master-worker scheme.



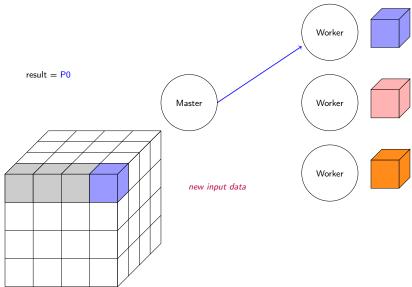


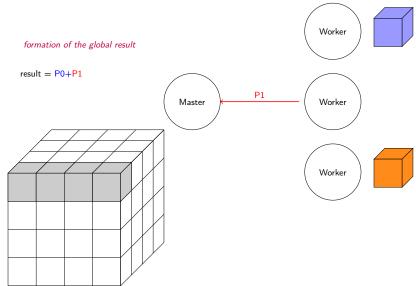


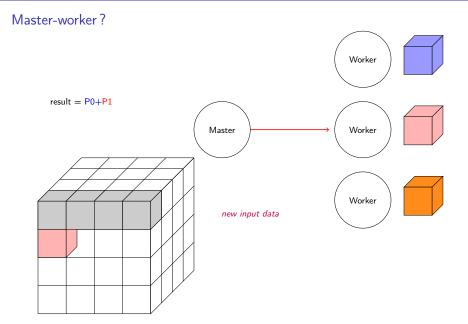


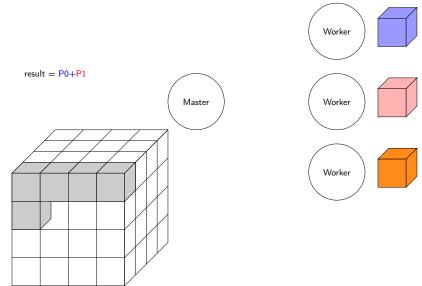
Master-worker?

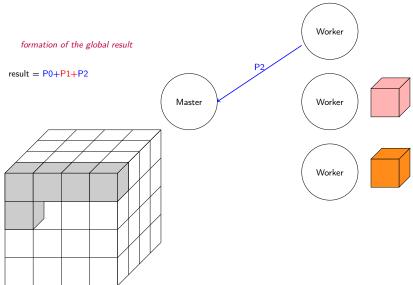


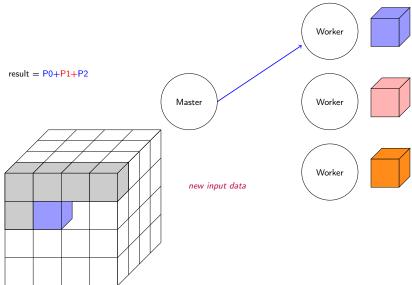


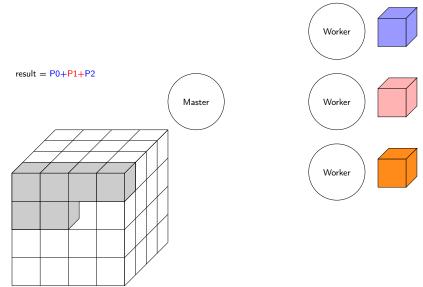




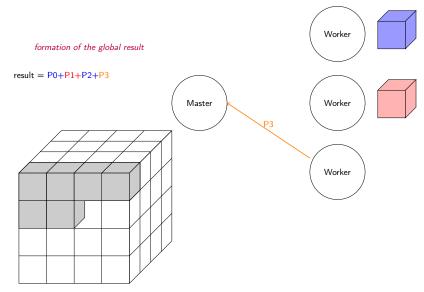


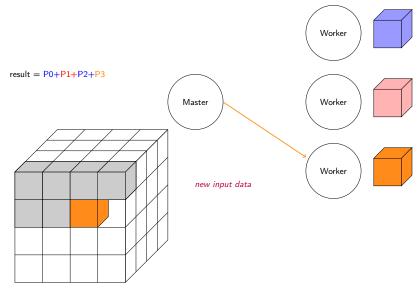


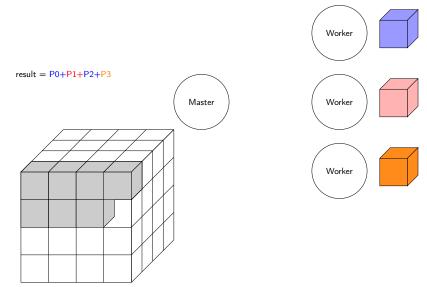




Master-worker?







Master-worker?

Traditional master-worker :

- The master maintains two queues : data and results
- The master sends chunks of data to the workers
- The workers compute partial sums
- The master gets results from the workers, combines them to form the global result

In our case :

- The workers send partial sums
- The master adds them to form the global sum (the invariant)

Problem : this global sum gets bigger and bigger

 $\rightarrow\,$ Bottleneck on the master, busy adding polynomials

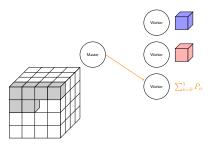
Delegate the sum

Bottleneck on the master

- Ask a worker to compute this sum
- The workers can have two different types of tasks :
 - Compute a partial sum (inner loops)
 - Add partial sums to form the global sum

However :

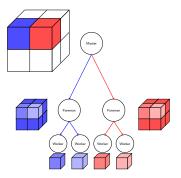
- Adds interactions between the master and a worker
- A worker computing the global sum is not computing any partial sum
- $\rightarrow\,$ Switch to this scheme when the global sums are too expensive



Hierarchical master-worker

Another reason why the master can become a bottleneck :

- Workers' requests are too frequent
- Granularity is too small, too many workers
- \rightarrow Use a hierarchical pattern
 - The workers request work from a foremen
 - The foremen request work from the master
 - The master sends a bigger chunk of work to each foreman
 - The foremen split this chunk into smaller chunks
 - The foremen compute intermediate sums, or delegate to a worker
- If the master becomes a bottleneck, how to tell why?
 - Use measurements
 - Which time proportion does the master spend outside communications?



Stateful worker

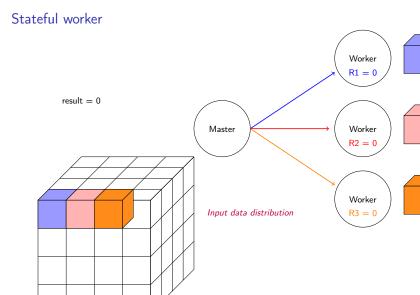
The main challenge is the computation of the global sum

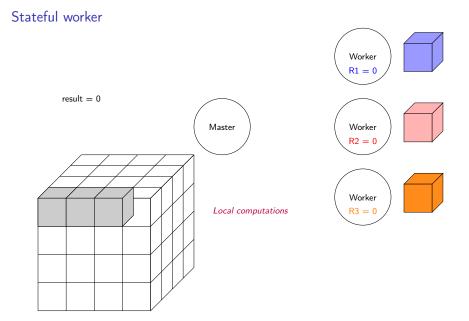
- Do not centralize it on the master
- Keep the partial sums on the workers, add them while waiting for more data
- Only at the end, add them to form the global polynomial (tree)

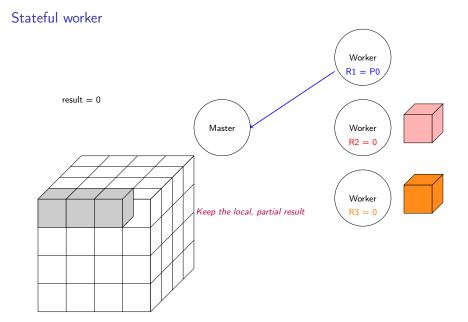
Algorithm 1 Master

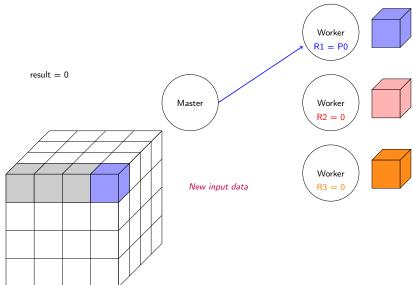
```
/* prepare parameter sets */
for a4 \leftarrow 0. N do
 for a2 \leftarrow 0. N do
  for a6 \leftarrow 0, N do
   params.push back({ a4,a2,a6)})
  end for
 end for
end for
/* distribute parameter sets */
while !parameters.empty() do
 src = recv( request, ANY SOURCE )
 p = params.pop()
 send( src, p, TAG WORK )
/* wait for all the workers */
while running() do
 src = recv( request, ANY SOURCE )
 send( src. 0. TAG END )
/* global sum */
Tens = reduction sum()
```

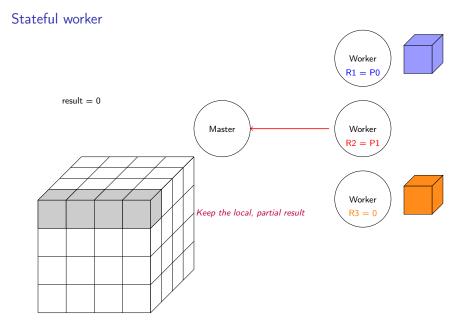
```
Algorithm 2 Worker
   Tens = 0
   T = 0
   while true do
    /* ask for some work */
    send( root, 0, TAG REQ )
    /* as I wait for a parameter set, add my polynomials
    reg = Irecv( ROOT, ANY TAG )
    if T = 0 then
     Tens += T
    p. tag = wait( reg )
    if tag == TAG END then
     break
    /* compute a polynomial for the parameters I have
   received */
    T = compute(p)
   /* global sum */
   reduction sum(Tens)
```

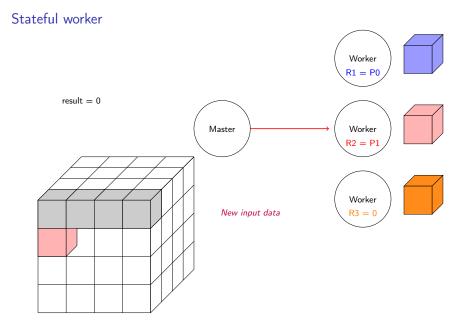


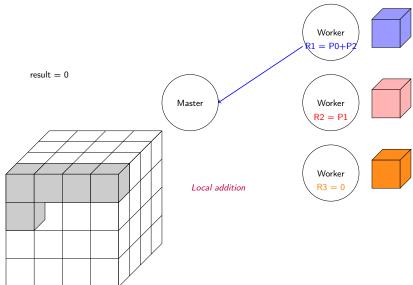


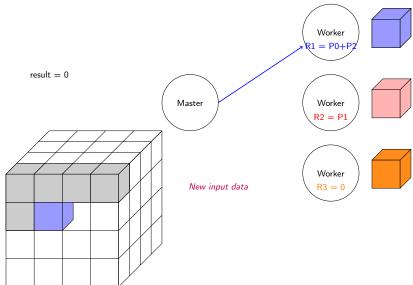


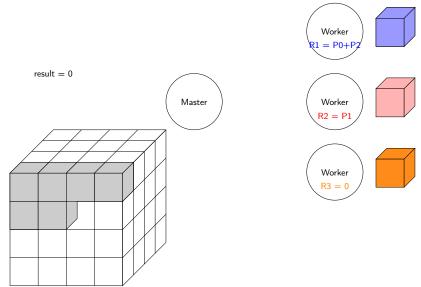


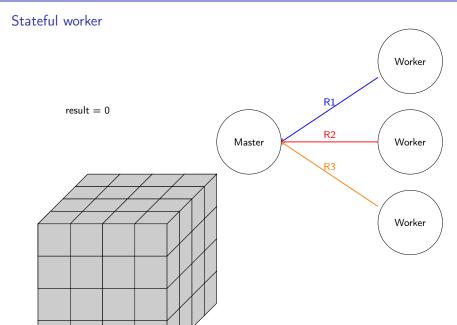


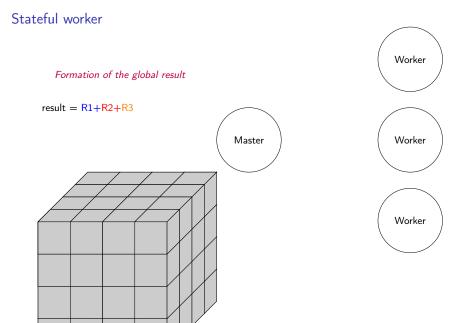












Outline

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation Comparison of the different schemes Combining the algorithms

Conclusion

Experimental setup

Software environment

OpenMPI 4.1, Linux kernel 4.9.0, Debian 9.8, g++ 8.3.0

Hardware

- Grid'5000 cluster : Parapide (Rennes)
- > 20 nodes, 2x Intel Xeon X5570 CPUs (4 cores/CPU), 24 GB of memory
- 20 Gb InfiniBand + GigaEthernet

Symbolic computing libraries :

- ► GiNaC 1.7.6 (not Gignac!)
- Obake : successor of Piranha, better on multivariate polynomials

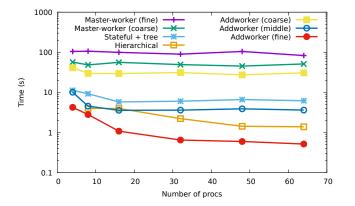
On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants

Performance evaluation

Comparison of the different schemes

Small tensor (N=4, size=8)

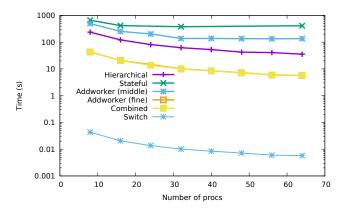
Using Obake.



On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants
Performance evaluation
Combining the algorithms

Medium tensor (N=6, size=12)

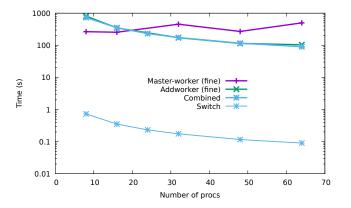
Using Obake. Blue bottom line : when the switch between *master-worker* and *addition on a worker* happens.



On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants Performance evaluation Combining the algorithms

Large tensor (N=8, size=16) 1/2

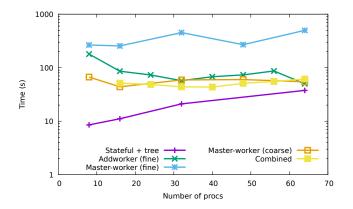
Using Obake. At small scale : we switch too late.



On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants
Performance evaluation
Combining the algorithms

Large tensor (N=8, size=16) 2/2

Using GiNaC : the polynomial operations do not take the same time.



On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants

Combining the algorithms

Hierarchical?

We have never seen the algorithm switch to the hierarchical scheme

- \blacktriangleright Policy : when the master is overloaded by requests \rightarrow switch to the hierarchical scheme
- Maybe because when a lot of requests are received, a lot of additions are needed (intermediate and partial)

Outline

Symplectic invariants

Symbolic computation

Parallel computation

Performance evaluation Comparison of the different schemes Combining the algorithms

Conclusion

Conclusion 1/2

In this problem, the computational work varies during the computation

- We were not sure it would (annulling terms \rightarrow reduced computation time)
- Increases in particular in the critical path (global sum)
- Non-linear

Goal : get as much as we can away from the critical path

Granularity of the computation :

- \blacktriangleright Increase the number of workers \rightarrow refine the granularity to keep them busy
 - ▶ Too small grain \rightarrow computation time too short wrt communications

Scalability :

- Increase the size of the problem
- Workers have more work
- More (expensive) polynomial additions (in the critical path)

Conclusion 2/2

Polynomial additions to for the global sum

- Become expensive quickly
 - Switch to a pattern that computes them on a worker
 - Good choice most of the times, switch quickly
- Stateful workers : much faster... except to form the global polynomial
 - most of the times its cost is higher than the gain during the computation.

Hierarchical scheme

- Never encountered a case where the switch policy applies
- The workload on each worker increases faster than the congestion on the master (as the size increases to scale)
- \blacktriangleright Larger problem \rightarrow larger polynomials to add

Dynamic workload, evolving (roughly) monotonically : advantage of run-time performance measurements to make decisions.